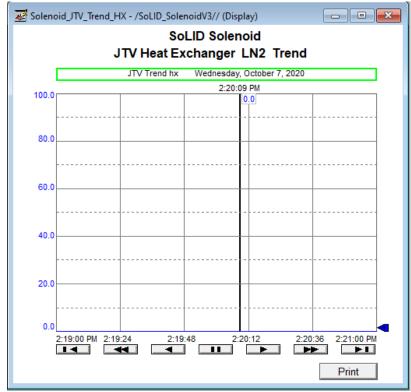


Detector Support Group We choose to do these things "not because they are easy, but because they are hard".


Weekly Report, 2020-10-07

<u>Summary</u>

Hall A – SoLID Magnet Controls

<u>Mary Ann Antonioli, Peter Bonneau, Aaron Brown, Pablo Campero, Brian Eng,</u> <u>Tyler Lemon, Marc McMullen</u>

- Completed modifications of Constant Current Source wiring diagram (drawing # A00000-16-03-0211)
- Developed Solenoid JT valve page for heat exchanger screen and Solenoid Electic Ball Valve (EBV) page for Warm Return (WR) in CS-Studio.
- Developed three HMI screens for plotting live data for Solenoid EBV WR, Heat Exchanger (HX), and JT Valve

Solenoid JTV Trend HX HMI screen showing a live plot of data for the heat exchanger's liquid nitrogen JT valve. Value shown in plot is zero since LVDT is not currently connected to the PLC

<u>Hall A – GEM Gas System</u>

Peter Bonneau, Brian Eng, George Jacobs, Mindy Leffel, Tyler Lemon, Marc McMullen

- Replaced chip on I²C multiplexer board
- Updated gas flow chassis fabrication drawings in NX12 to correct the cutout size for RJ11 feedthroughs
- Started assembly of flow sensor chassis
- Started development of Python code to read data from flow sensors

Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2020-10-07

<u>Hall C – NPS</u>

<u>Mary Ann Antonioli, Peter Bonneau, Aaron Brown, Pablo Campero, George Jacobs,</u> <u>Mindy Leffel, Tyler Lemon</u>

- Completed 14 PMT screens and added them to NPS screen
 - ★ 194 of 1080 PMT screens completed
- Continued development of NPS Overview CSS-BOY screen
 - Added new color rule to LED indicators to indicate that the module has crossed the temperature threshold
- Developed test to automate performance and analysis of CAEN channel trip tests
 - * Test will use data logger to record data and then plot/analyze data using Python
- Researched hardware interface needed for the UPS-600 humidity sensor from Ohmic Instruments
 - ★ Sensor's radiation tolerance: 2 Mrad
 - ★ Accuracy: +/-2.5% RH
 - ★ Range: 10% RH 95% RH
 - Sensor requires radiation tolerant (or shielded) support circuitry to be close to the sensor
 - Support circuitry includes a sine wave oscillator, AC to DC converter, and temperature compensation
- Analyzed CAEN voltage and current stability data in Excel
 - * All 32 modules complete for voltage stability data
 - ★ 20 complete, 12 remaining for current stability data
- Fabricated 40 divider cables
 - ★ Total of 870 completed so far

HDice

Peter Bonneau, Tyler Lemon

- Attended demonstration of Zurich Instruments Lock-in amplifier boxcar averager
 - ★ The boxcar averager helps to recover periodic signals that occur at a known frequency that is obscured by noise
 - ★ The Zurich boxcar averager option is a software option that does not add any extra hardware capabilities to the lock-in amplifier
- Debugged HDF5 file uploading to lock-in amplifier
 - ★ Used HDFView program to edit a data file created by the lock-in amplifier and was able to upload it to the lock-in amplifier without any issues
 - ★ Found that if a new data file was created from scratch, Zurich lock-in amplifier could not read the file
 - Error received stating that there were file permission issues.
 - ★ It appears that the lock-in amplifier adds some metadata to the data file that is required for it to be able to be uploaded back to the lock-in amplifier